

Astronomie

Du visuel ...

... à la photo

Olivier Ravayrol

Sommaire

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles

Sommaire

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles

Quelques dates clés

1543 : Copernic : La Terre n'est pas le centre de l'Univers !

• 1609 : Kepler : Lois des mouvements des planètes

• 1610 : Galilée : 1ère lunette + observation des satellites de Jupiter

• 1687 : Newton : 1^{er} télescope + loi de la gravitation

• 1860 : Huggins : Spectroscopie => naissance de l'Astrophysique

• 1905 : Schwarzchild : prédiction des trous noirs

• 1916 : Einstein : Théorie de la Relativité Générale

• 1929 : Hubble : Expansion de l'univers

1931 : Jansky : Emissions radio => naissance de la Radioastronomie

• 1948 : Gamow : Théorie du Big Bang

1970 : Rubin : Hypothèse de la matière noire

• 1975 : Hawking : Evaporation des trous noirs

• 1995 : Mayor et Queloz : Découverte de la 1ère exoplanète

• 2015 : Première détection d'ondes gravitationnelles

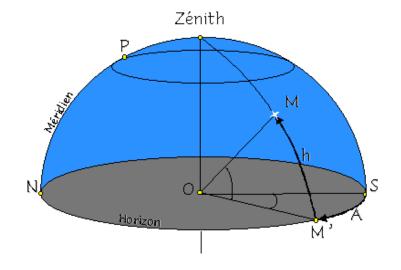
• 2019 : Première image d'un trou noir

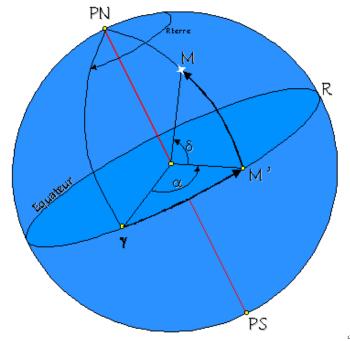
Systèmes de coordonnées et Magnitude

Système de coordonnées

- L'observateur terrestre est au centre du repère
- · Les lignes imaginaires sont représentées sur la sphère céleste

Type Azimutal : dépend du lieu et de l'heure !

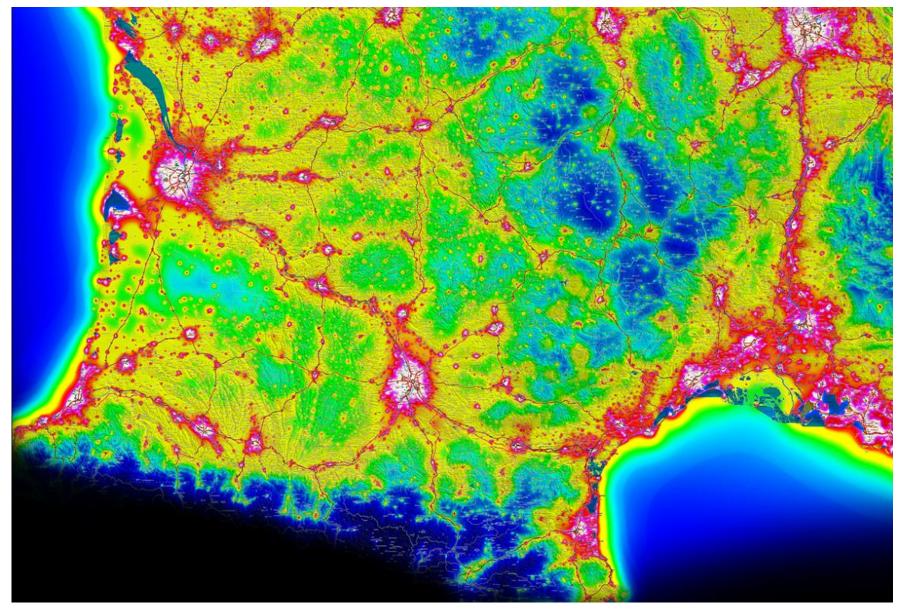

- Azimut : origine = Sud [0° à 360°]
- Hauteur : origine = Horizon [0° à 90°]


Type Equatorial : système uniforme

- Déclinaison (Latitude projetée) : origine = équateur céleste [-90° à 90°]
- Ascension Droite(
 Longitude projetée): origine = Pt Vernal [0° à 360°]
 (intersection entre l'écliptique et l'équateur céleste)

La Magnitude apparente

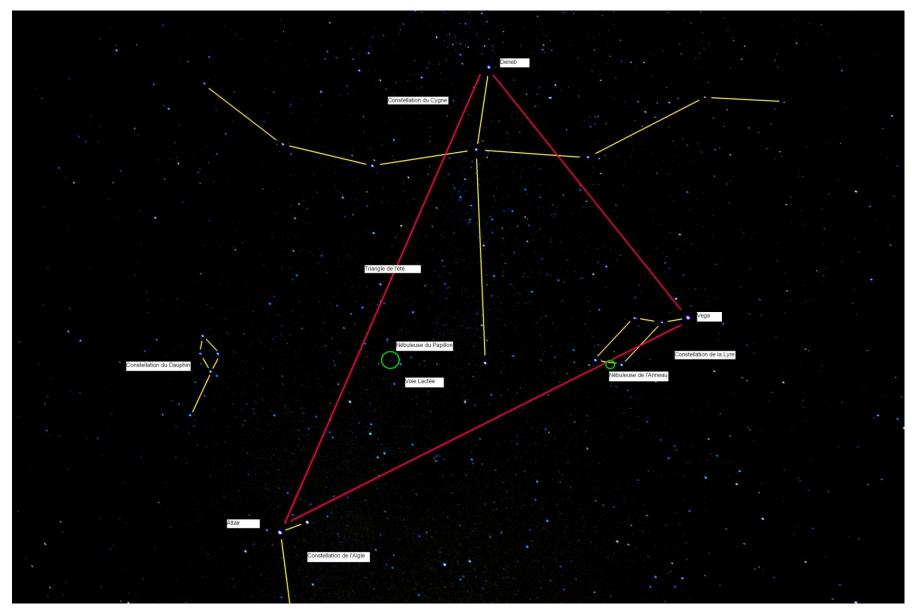
- Sert à mesurer la luminosité d'un objet céleste
- + c'est élevé et c'est lumineux (échelle log inverse)
- Polaris = 2,09; Vega = 0; Sirius = -1,46; Soleil = -26,78



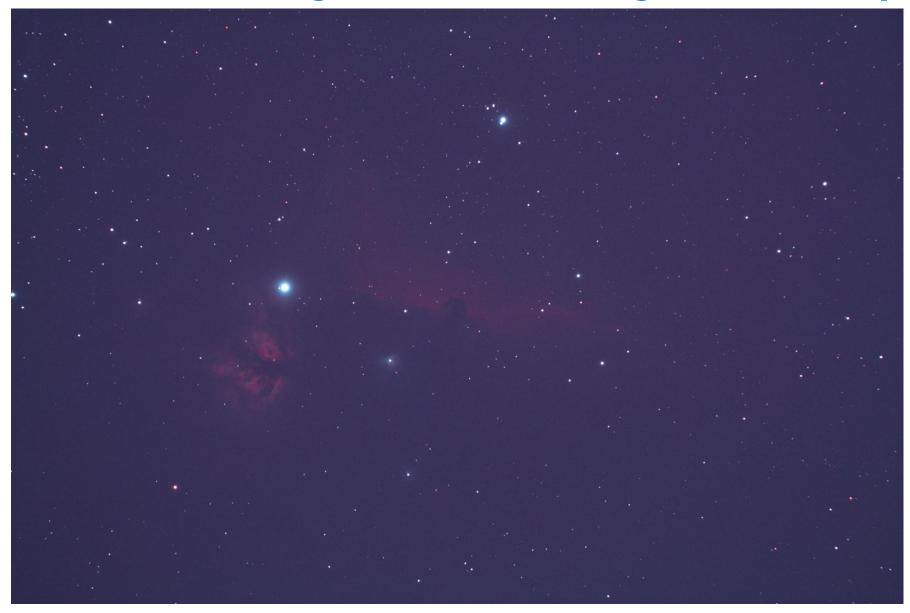
Sommaire

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles

La vraie guerre des étoiles : La pollution lumineuse !


Exemple avec un ciel de campagne (simulation)

Exemple avec un ciel de banlieue d'une grande ville (simulation)


Le triangle de l'été

Certaines communes éteignent leurs éclairages la nuit : avant

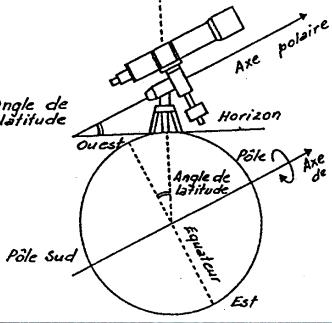
Certaines communes éteignent leurs éclairages la nuit : après

Sommaire

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles

La mise en station

Avantage de la monture équatoriale


• L'axe de rotation de la terre est (presque) aligné sur l'étoile polaire Angle de

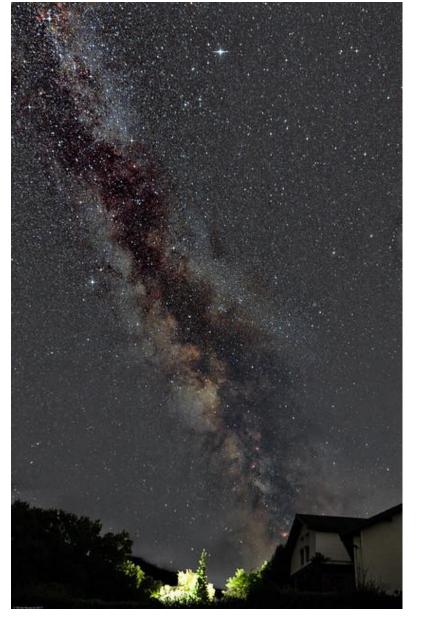
• Il suffit d'aligner l'axe « AD » de la monture sur la Polaire

 La monture équatoriale a « juste » à suivre la rotation terrestre pour suivre un objet céleste pointé (vitesse sidérale via un moteur)

Mise en station de la monture équatoriale

- 1. Le trépied de la monture doit être de niveau
- 2. Alignement sur la Polaire à l'aide du viseur polaire
- 3. Mise à jour des coordonnées GPS du lieu d'observation
- 4. Alignement sur 3 étoiles brillantes via la raquette ou un logiciel sur un PC connecté à la monture (correction par triangulation)
- 5. Sauvegarde des points d'alignement pour ne pas tout refaire
- 6. La monture est prête à chercher et suivre un objet céleste (GoTo)

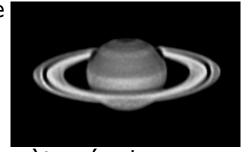
Observation visuelle : le plus accessible


Les yeux

- Attendre 10 mn environ pour s'adapter à l'obscurité
- Il faut se repérer à partir de la Grande Ourse => Polaire
- On peut observer :
 - La Voie Lactée
 - Constellations et certains amas d'étoiles (Les Pléiades)
 - La galaxie d'Andromède
 - Les planètes
 - Etoiles filantes

Les jumelles

- Utiliser de préférence un trépied pour une vue stabilisée
- Régler chaque oculaire séparément sur une étoile brillante
- Permet d'avoir un effet « 3D »
- On peut observer :
 - Les amas d'étoiles ouverts (Double amas de Persée)
 - Les nébuleuses brillantes (Orion)
 - Jupiter et ses satellites


Observation visuelle : Lunette et télescope

Lunette (réfracteur) ou Télescope (réflecteur) ?

- Les 2 permettent de tout voir mais dépend du diamètre
- La luminosité de l'instrument dépend du rapport Focale / Diamètre
 - > F/D > 10 : idéal pour les objets lumineux comme les planètes
 - \gt F/D < 5 : idéal pour les objets peu lumineux comme les galaxies
 - > F/D petit : idéal pour la photo car diminue le temps de pose
- La résolution et le grossissement augmente avec le diamètre
 - ➤ Grossissement max de l'instrument ~= 2,5 x Diamètre
 - Grossissement = Focale instrument / focale oculaire
 - Si G > G max alors l'image sera floue!

Facteurs différenciants

- Le prix d'une lunette est beaucoup plus élevé à diamètre égal
- Le télescope a besoin d'être « collimaté » régulièrement
- La lunette permet d'obtenir des images plus contrastées
- Le télescope est plus encombrant à transporter
- Privilégier le diamètre de l'instrument => télescope car moins cher

Observation visuelle : les accessoires

- Oculaires: 3 focales suffisent
 - Grand champ : f > 20 mm
 - Champ moyen : f E [10 mm ; 20 mm]
 - Fort grossissement : f < 10 mm mais à grand angle (> 60°)

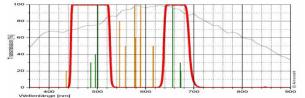
Lentilles de Barlow

- Augmente la focale de l'oculaire et donc le grossissement
- Les coefficients multiplicateur vont de 2x à 5x
- Certaines possèdent également un correcteur de champ

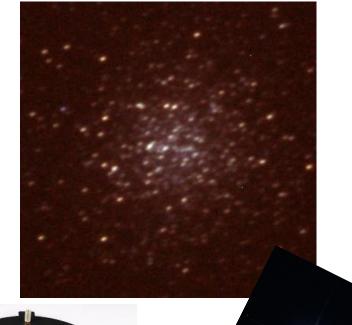
Filtres

- Lune: polarisant variable
- Soleil :
 - > Filtre solaire pour les tâches solaires
 - > Filtre H-Alpha pour les protubérances (mais très cher)
- Ciel profond : filtre anti pollution lumineuse (type UHC ou CLS)
- Planètes : différentes couleurs afin d'améliorer le contraste selon la planète à observer

Sommaire

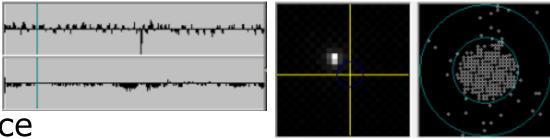

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles

L'astrophotographie : les difficultés commencent !

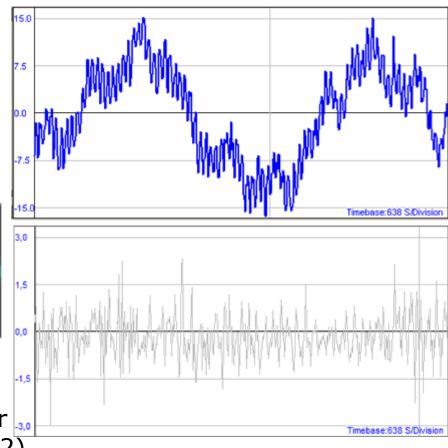

Problèmes

- Luminosité faible => temps de pose long => stabilité requise
- La mise en station n'est pas parfaite => le suivi dérive
- La monture suit l'objet mais il y a les jeux mécaniques
 - => L'erreur périodique est importante (vis sans fin)
 - => La photo est floue!
- La pollution lumineuse est élevée => photo orange !
- Le focus n'est pas assez précis => problème de netteté!
- La photo est trop bruitée => « grains » dans la photo !
- Il y a des poussières et des pixels chauds dans la photo

Contournements


- Focus réalisé à l'aide d'un masque de Bahtinov
- Mise en place d'un automatisme sur le suivi : l'autoguidage
- Ajout d'un filtre anti-pollution lumineuse
- Diminution du bruit dans la photo : on additionne plusieurs photos
- Retrait des poussières et des pixels chauds à l'aide de « flats » et de « darks »

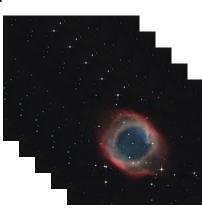
L'astrophotographie: l'autoguidage


Principe

- Mesurer l'erreur de suivi / position initiale
- Le suivi s'écarte du seuil de tolérance ?
- Si oui : envoyer des ordres à la monture en + ou -
- Erreur inférieure au seuil de tolérance ?
- Si oui : arrêter d'envoyer les ordres

•Mise en place

- 1. Ajouter en parallèle de l'instrument une petite lunette
- 2. Monter une caméra monochrome sur la lunette
- 3. Sélectionner une étoile « guide » près de l'objet à imager
- 4. Utiliser une application de guidage (Guidemaster ou PHD2)
- 5. Régler le focus et faire une calibration sur l'étoile choisie
- 6. Verrouiller le suivi de la monture sur l'étoile guide
- 7. L'application envoie alors des ordres de suivi à la monture

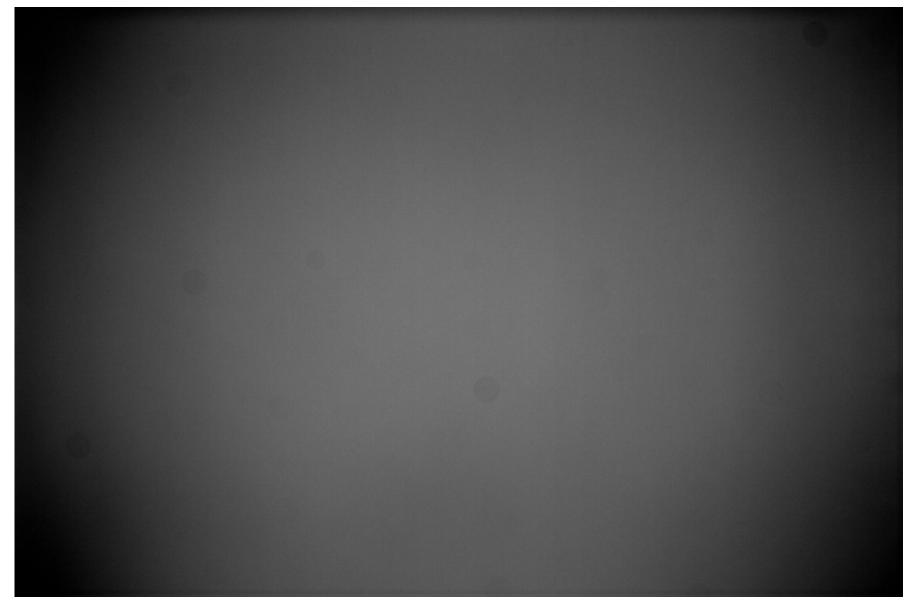

L'astrophotographie : le prétraitement est essentiel

But

- Diminuer le bruit dans l'image
- Retirer les défauts : poussières et pixels chauds
- Méthode : faire des calibrations (comme pour l'imagerie spatiale)
 - Faire des « offsets » : photo avec obturateur fermé et temps de pose le plus court possible (mesure du courant d'obscurité)
 - Faire des « flats » : photo avec le même focus sur un fond uniforme (blanc)
 - Faire des « darks » : photo avec obturateur fermé et même temps de pose que l'objet (mesure du bruit thermique)
 - Faire plusieurs photos brutes de l'objet (> 10)

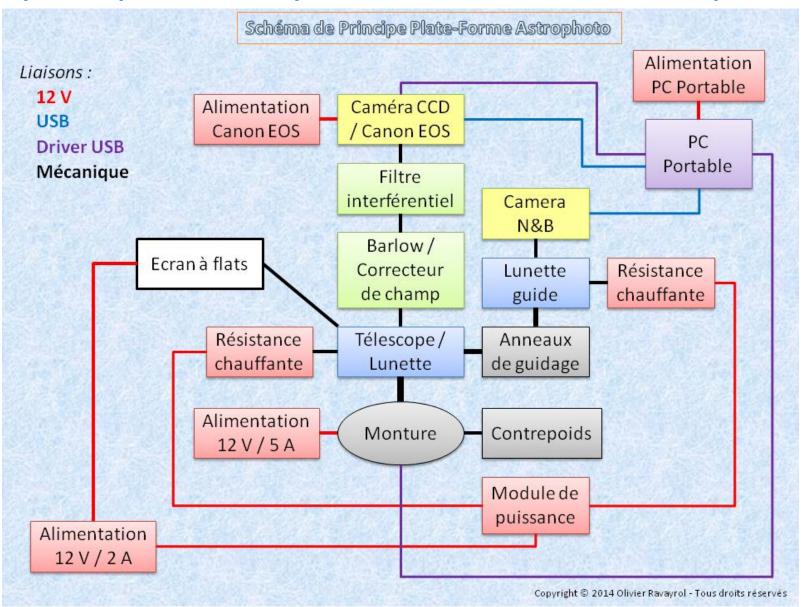
Procédure

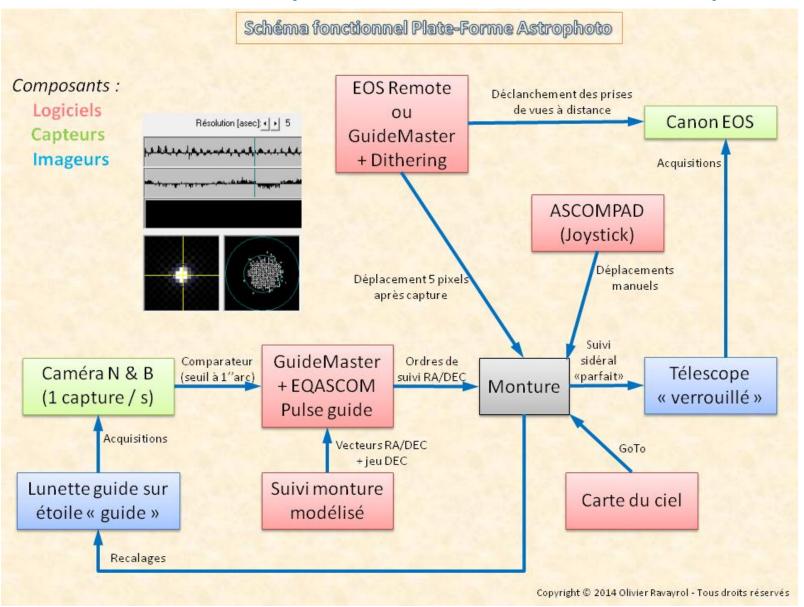
- 1. Créer les images de calibration « maître » : pile médiane des calibrations
- Créer les images brutes prétraitées avec la formule suivante : brute_prétraitée = (brute - dark_maître) / (flat_maître - offset_maître)
- 3. Aligner toutes les brutes prétraitées entre elles (transformation géométrique calée sur les étoiles)
- 4. Additionner toutes les brutes prétraitées en une seule image


Exemple de prétraitement : **Brute** (240 s / 800 iso)

Exemple de prétraitement : Somme de 27 photos prétraitées

Exemple de prétraitement : Flat maître (1/6s - 800 iso)


Exemple de prétraitement : Sans flat


Exemple de prétraitement : Avec flat

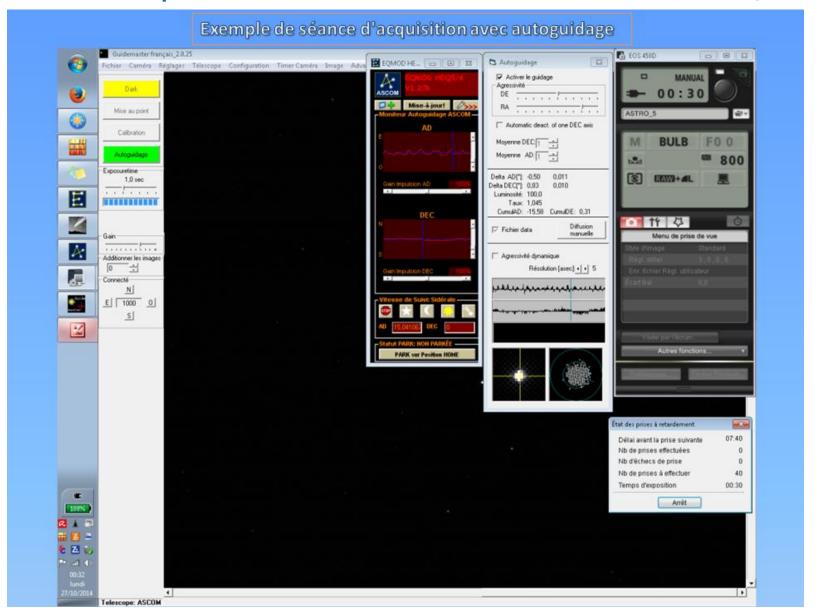
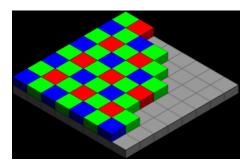

Schéma de principe de ma plate-forme dédiée à la photo

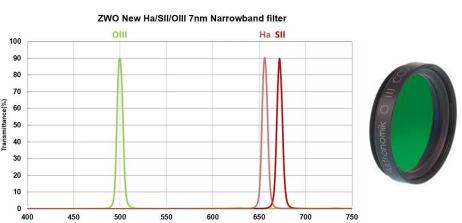
Schéma fonctionnel de ma plate-forme dédiée à la photo

Supervision des acquisitions en remote via WiFi (pilotage à distance)

Sommaire

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles




Astrophotographie avancée : capteurs & filtres

Les capteurs

- Caméra monochrome CCD refroidie : Le top mais très cher
- Caméra monochrome CMOS refroidie : Bon rapport qualité/prix (bruit bien maitrisé)
- APN (CMOS non refroidi) :
 - Capteur couleur => 3x moins sensible qu'un monochrome (matrice de Bayer)
 - Il faut les faire refiltrer pour qu'ils voient mieux dans le rouge !
 - Capteur non refroidi => bruit plus important sur les longues poses

- Les filtres interférentiels
 - Diminue la pollution lumineuse
 - Ne laisse passer que les raies d'émission des nébuleuses pour un meilleur contraste : essentiellement H-Alpha, Oxygène 3, Sulfure d'hydrogène 2
 - Permet de créer des images en fausses couleurs « Hubble »

Astrophotographie avancée : la trichromie

- Les capteurs monochromes sont 3x plus sensibles
- •Il faut prendre 3 photos en les alignant pour faire une photo couleur :
 - Soit 4 filtres Luminance, Rouge, Vert, bleu => photo L-XVB
 - Soit 3 filtres SII, H-Alpha, OIII => photo Ha-SHO

SII

Ha

Astrophotographie avancée : luminance et couleur

- La couche luminance : correspond au signal utile de l'objet
 - Photo monochrome sans filtre ou avec la couche la plus détaillée (Ha)
 - Doit contenir la plus grande partie du signal utile
 - Doit être le moins bruité possible
 - Doit être le plus détaillé possible
- La couche couleur : permet de coloriser la couche luminance
 - Correspond aux couches RVB ou SHO vu précédemment
 - La présence de bruit est moins gênant
 - Le détail a moins d'importance

Astronomie : du visuel à la photo | Olivier Ravayrol | 13/06/2019

Exemple avec les nébuleuses M8 & M20 : Luminance

Exemple avec les nébuleuses M8 & M20 : Couleur RVB

Exemple avec les nébuleuses M8 & M20 : L-RVB

Exemple avec les nébuleuses M8 & M20 : Luminance

Exemple avec les nébuleuses M8 & M20 : Luminance Ha

Exemple avec les nébuleuses M8 & M20 : Couleur RVB

Exemple avec les nébuleuses M8 & M20 : Ha-RVB

Exemple avec les nébuleuses M8 & M20 : L-RVB

Exemple avec les nébuleuses M8 & M20 : Luminance Ha

Exemple avec les nébuleuses M8 & M20 : Couleur SHO

Exemple avec les nébuleuses M8 & M20 : Ha-SHO

Sommaire

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles

Similitudes avec la télédétection optique

ltem comparé	ASTROPHOTO	TELEDETECTION OPTIQUE (Exemple avec Pléiades)
Programmation	Applications de contôles / connexions physiques	Stations de contrôle / commande (+ antenne)
Imageur	Télescope (tube carbone) ou Lunette	Télescope tube carbone
	D = 150 à 250mm , F =900 à 1200mm => F/D =4 à 6	F = 13 m , D = 650 mm => F/D = 20
	1 capteur CCD ou CMOS (Moy de 20M pixels, taille pixel = 3 à 5 μm)	Panchro : 5 barettes CCD (6000 pixels / barrette, taille pixel = 13 μm)
		Couleur: 5 x 5 barettes CCD (bandes B0 à B3, 1500 pixels / barrette, taille pixel = 52 µm)
	Offset : mesures du courant d'obscurité	Radiométrie essentiellement : étoiles, bord de Lune, déserts et glace
Calibrations	Darks: mesures du bruit thermique	
	Flats : mesures des défauts de l'optique	
Focus	Etoile brillante (avec masque de Bahtinov)	Cibles connues au sol
Déplacement visée	Courroies / roue dentées	Roues de réaction
Précision de la visée	Alignement sur les étoiles	Recalage des positions x,y,z sur l'orbite par télémétrie laser ou radiolocalisation
	Recalages réguliers sur la cible ajustée à cause des jeux mécaniques	Recalage des attitudes ϕ , θ , ψ avec pointage sur les étoiles (star tracker)
Stabilité de la visée	Jeux mécaniques pendant le suivi de la rotation de la terre	Microvibrations mais maîtrisées (110 μrad/s max)
	Vibrations (vent, contraintes mécaniques)	
	=> Asservissement à l'aide d'une lunette + caméra de guidage	
	1 acquisition par filtre	1 image = 1 mosaïque ou 1 scan de plusieurs acquisitions (1 acquisition = 25 images d'un coup)
Acquisition	=> 4 acquisitions / 4 filtres pour avoir une image couleur L-RGB	Possibilité de stéréoscopie/tri-stéréoscopie
		Mode "vidéo" possible
	3 à 7 mn en moy / acquisition car objet faiblement lumineux	Très court car vitesse de déplacement au sol importante et détecteur très sensible
Temps de pose	(il faut acquérir un maximum de photons !)	La surface est lumineuse car éclairée par le soleil et souvent acquise près du Nadir
	(Luminance en binx1, couleur en binx2 => 1 pixel = 4 pixels=> sensibilité	
	élevée mais résolution dégradée => temps de pose réduit)	
Récupération des images	Instantané à chaque fin d'acquisition (quelques secondes)	Stockage dans la mémoire bord
	Pas de compression	Compression des images pour optimisation de la taille disponible
		Vidage mémoire à chaque passage au dessus du centre de réception (données cryptées)
Traitement	Retrait du gradient lié à la pollution lumineuse	Correction radiométrie
	Réduction du bruit	Correction géométrique
	Amélioration de la luminosité de l'objet (addition de plusieurs poses)	Correction atmosphèrique
Création image couleur	Luminance ou filtre Ha (résolu) + bandes couleur ou SHO (moins résolu)	Bande Panchro (résolution à 70 cm) + bandes couleurs B0-3 (résolution à 2,8 m)

Sommaire

- Introduction
- La pollution lumineuse
- L'observation visuelle
- L'astrophotographie
- Techniques avancées
- Similitudes avec la télédétection optique
- Quels matériels pour quels budgets ?
- Informations utiles

Quel matériel pour quel budget ? Visuel

Instrument	Modèle	Coût au 01/06/19 (€)	Remarques
Visuel			
Trépied photo + rotule	Charge max 15 kg	150	Léger (1,7 kg) et peu encombrant une fois plié
Jumelles	15 x 70	99	
Jumelles	20 x 80	180	
Lunette achromatique	120/600	375	Avec monture AZ3 non motorisée (1er prix)
Télescope	200/1000	625	Avec monture NEQ5 motorisable (1er prix)
Télescope Dobson Flex tube	Skywatcher 300/1500 GoTo	1080	Grand diamètre => le top pour le visuel du ciel profond !
		1000	Démontable pour le transport
Lunette solaire	60mm / H-Alpha	1500	Pour l'observation du Soleil uniquement
		1300	H-Alpha : permet de voir les protubérences
Oculaire	28mm	40	Grand champ
Oculaire	20 mm / champ 62°	90	Champ moyen
Oculaire	8 mm / champ 82°	150	Zoom
Lentille de Barlow	3x	80	Permet d'augmenter la focale et donc le grossissement pour observer les planètes
Filtre lunaire	Polarisant variable	40	Réduit la luminosité excessive de la Lune
Filtre solaire	Astrosolar safety film	25	Feuille A4 à fixer sur l'objectif
			Permet de voir les tâches solaires
Filtre anti-pollution lumineuse	UHC visuel	99	Améliore le contraste des objets du ciel profond

Quel matériel pour quel budget ? Photo

Instrument	Modèle	Coût au 01/06/19 (€)	Remarques
Monture équatoriale	Skywatcher HEQ5 Pro GoTo	1000	Charge max photo = 10 kg (très bon rapport qualité / prix / charge utile)
Monture équatoriale	Skywatcher HEQ6-R Pro GoTo USB	1500	Charge max photo = 17 kg (monture lourde à transporter)
Télescope	Skywatcher 200/1000 - F/D=5	380	Petit champ / planètes (9 kg)
Télescope	TS Optics 200/800 Carbone - F/D=4	1100	Petit champ / planètes (très bon rapport qualité / prix) Poids léger avec 7,4 Kg
Lunette autoguidage	Skywatcher 80/400	100	Pour l'autoguidage
Lunette	Skywatcher 72/420 (F/D=6) APO doublet	330	Grand champ / champ moyen
Lunette	TS Optics 80/480 (F/D=6) APO triplet	800	Grand champ / champ moyen (très bon rapport qualité / prix)
APN	Réflex Canon EOS 1300D défiltré	680	Société EOS For ASTRO' Facile à utiliser pour débuter la photo astronomique et polyvalent (Voie Lactée) Possibilité de faire de la couleur Hubble
Caméra astronomique CMOS	Monochrome ZWO ASI 1600MM Pro	1500	Ciel profond et planétaire
Caméra planétaire CMOS	Monochrome ZWO ASI120MM	200	Planètes / Autoguidage
Objectif grand champ	Samyang 14 mm (F/D=2,8)	330	Voie Lactée et paysages nocturnes étoilés
Correcteur de champ télescope	Baader MPCC	160	Corrige la coma des étoiles en bord de champ
Roue à filtre	Motorisée 7 positions	350	Permet de changer de filtre sans démontage et refocus
Filtre LRVB	1 filtre luminance, 3 filtres Rouge, Vert, bleu	100	Permet de créer des images en vraie couleur
Filtres SHO	3 filtres D=31,75 SII, H-Alpha, OIII en 12nm	390	Permet de créer des images en couleur Hubble 12nm pas suffisant si pollution lumineuse ou pleine Lune
Filtres SHO	3 filtres D=31,75 SII, H-Alpha, OIII en 6nm	600	Permet de créer des images en couleur Hubble 6nm 2x + cher que 12nm mais beaucoup mieux si pollution lumineuse + Lune
Lentille de Barlow	APM ED 2,7x avec correcteur de coma intégré	170	Permet d'augmenter la focale et donc le grossissement pour la photo des planètes
Laser de collimation pour Newton	Hotech	140	Permet de collimater le télescope Newton facilement (nécessaire avant chaque séance d'acquisition)
Masques de Bahtinov	2 diamètres différents	50	Permet de régler le point de focus facilement sur une étoile brillante 1 pour le Newton et 1 pour la lunette
Ecran à flats	Diamètre > au Newton	120	Permet de créer des images de calibration des défauts de l'optique Sert également pour la lunette
Budget photo avec Lunette		2830	Monture HEQ5 + Lunettes TS Optics + Guidage + caméra guidage + EOS
Budget photo avec Télescope		3440	Monture HEQ5 + Télescope TS Optics + Guidage + caméra guidage + EOS + Laser + Barlow
Budget photo "Pro"		6530	Monture HEQ6-R + Télescope & Lunette TS Optics + Guidage + caméra astro + Laser + Barlow + filtres L-RVB & SHO

Informations utiles

- Formation CFP « La tête dans les étoiles » (Gers) : www.fermedesetoiles.com
- AIP: Association proposant des stages et de nombreux tutaux en astrophoto (http://www.astro-images-processing.fr)
- Livre recommandé: « Astrophotographie » de Thierry Legault (http://www.astrophoto.fr/astrophotographie.html)
- Revue Ciel & Espace : nombreux articles et podcasts (http://www.cieletespace.fr/)
- Magasin d'astronomie à Toulouse : http://laclefdesetoiles.com
 - Céline et Sébastien Vauclair (Dr en Astrophysique) seront vous conseiller ;-)
- Sur le web :
 - Astrosurf: http://www.astrosurf.com
 - Forum traitant de tous les sujets liés à l'astronomie (très nombreux retours d'expériences)
 - Logiciels et éphémérides synthétiques des principaux évènements
 - Webastro: communauté française d'astronomie (http://www.webastro.net)
 - Association Française d'Astronomie : http://www.afastronomie.fr/
- Logiciel :
 - Stellarium : Planétarium (http://www.stellarium.org/fr/)
 - Atlas Virtuel de la Lune : (http://ap-i.net/avl/fr/start)

Plus de détails sur mon site perso ...

Questions - Réponses

